

RECEIVED

OCT 14 2005

ECEJ-TEP

Sent via U.S. Mail

Eric Johnson U.S. Environmental Protection Agency Region 8, 8ENF-T 999 18th Street, Suite 300 Denver, Colorado 80202-2466

RE:

Progress report for September 2005 activities - Hecla Mining Company Apex Site (EPA

ID No. UT982589848, Docket No. RCRA-8-99-06)

Dear Mr. Johnson:

Per paragraph 64 of the Order, enclosed is a copy of the September 2005 progress report for your records.

If you have any questions please do not hesitate to call me at (208) 769-4135 or e-mail at cqypton@hecla-mining.com.

Sincerely,

Chris Gypton
Project Manager

Encl

Cc:

HMC Legal Dept (w/o attachments)

John Jacus, Esq. (DG&S)

October 10, 2005

Sent via U.S. Mail

Glenn Rogers, Chairman. Shivwits Band of Paiute Indian Tribe P.O. Box 448 Santa Clara, Utah 84765

John Krause
Bureau of Indian Affairs Phoenix Area Office
U.S. Department of Interior
P.O. Box 10
Phoenix, AZ 85001

Deborah Hamlin BIA Southern Paiute Field Station, Branch of Natural Resources P.O. Box 720 St. George, UT 84771

RE: Progress report for September 2005 activities - Hecla Mining Company Apex Site (EPA ID No. UT982589848, Docket No. RCRA-8-99-06)

Dear Chairman Rogers, Mr. Krause and Ms. Hamlin:

Per paragraph 64 of the Order, enclosed is a copy of the September 2005 progress report for your records.

If you have any questions please do not hesitate to call me at (208) 769-4135 or e-mail at cqvpton@hecla-mining.com.

Sincerely.

Chris Gypton 'Project Manager

Encl

Cc:

HMC Legal Dept. (w/o attachments)
John Jacus, Esq. (DG&S) (w/o attachments)
Eric Johnson (USEPA, Region VIII) (w/o attachments)

October 10, 2005

MEMORANDUM TO:

Paul Glader

COPIES TO:

file, distribution

FROM:

Chris Gypton

SUBJECT:

Progress Report No. 17 for period ending September 30,

2005; Pond 2 Final Closure - Apex Site, Washington

County, Utah

Summary

Weather conditions at the site were satisfactory all month. No measurable precipitation was reported by site personnel.

The contractor began excavating to locate the top edge of the existing liner on September 6th. By the close of the month approximately 1,500 lineal feet of this edge, nearly 90%, had been exposed. The edge of the existing liner was found in poor condition in some areas. The Project Engineer inspected the damaged areas and outlined a method to repair them with GCL material. Re-sloping of the embankment was also started; approximately 30% of this work was completed in the month. Scheduled pumping of the drainage sumps ended with the startup of the Phase III earthwork activities. The evaporation basins and dewatering sumps were filled in.

The GCL installation subcontractor inspected the subgrade at the end of the month and agreed it was suitable for placement of the lining material. This contractor will mobilize and begin work the week of October 9th.

The final cover is expected to be complete by the week of November 13th.

Major Issues

- BIA demand to have Pond 2 removed from Shivwits' property A response to BIA's July 12th letter was issued on August 2nd. BIA submitted a follow-up letter dated August 25th stating they will provide additional justification for removal of Pond 2. This issue is still not resolved, however we are proceeding with Phase III with the force majeure provisions in the 7003 order still in effect.
- 2. Actual condition of existing liner edge Several ragged or irregular section have been found on the top edge of the existing liner. The Project Engineer recommended a GCL and bentonite patch to supplement the existing material and provide an adequate substrate for the cover liner. Refer to Supplemental Attachments for additional information. This additional work has to be done by hand, and has delayed the start of installation of the cover liner by about two weeks.

Work Planned for Next Period

- 1. Continue management of the existing seepage collection system as required.
- 2. Complete embankment re-grading.
- 3. Survey the location of the existing liner before completing the final cover.
- 4. Complete subgrade preparation.
- 5. Install the GCL and start placing the protective cover.
- 6. Start diversion ditch regarding and installation of rip-rap protective layer.

Work in Process

Procure Outside Services

1. Arrangements were made with Applied Geotechnical and Engineering Consultants (St. George, Utah) to provide compaction testing.

Procure Materials

1. GCL delivery has been re-scheduled for the week of October 9th. The installation subcontractor plans to install the material as it is delivered in lieu of storing the entire material requirement at site.

Contractor Submittals

1. Product submittals for the GCL materials were reviewed by the Project Engineer on September 9th and found to conform with the specifications.

Seepage Collection System Maintenance

1. Seepage collection system was monitored concurrently with earthwork activities; seepage has effectively ceased. The collection system will be removed by mid October.

Phase II Drain/Evaporate Excess Water

1. This phase of work was terminated the week of September 5th; the drainage sumps and evaporation ponds were filled in during the month. Any localized saturation encountered during embankment re-grading will be removed with temporary sumps, the liquid pumped to the center of the impoundment and allowed to evaporate. During the month three locally saturated areas were identified. Less than 100 gallons of liquid was recovered from each location and the areas dried up within a day.

Phase III Final Cover Construction

- Embankment excavation started on September 6th. By the end of the month approximately 1,500 feet of existing liner edge had been exposed. Re-sloping and compaction of the top of the impoundment was also started.
- 2. The four evaporation basins were filled in with compacted earth. All dewatering sumps were also filled in and pipe projecting above grade was cut off flush with the subgrade.
- 3. The GCL installation subcontractor inspected the subgrade on September 30th and agreed it was acceptable provided large rocks and other debris are not projecting above the subgrade. This contractor will mobilize and begin work the week of October 9th. GCL installation is expected to take around two weeks. An additional week will be required to complete installation of the 12 inch thick protective cover.

Sampling and Analysis in Period

Material Characterization

1. No activity

Field Tests, Inspections & OA/QC

- 1. The Project Engineer (Monster Engineering) inspected the work on September 21st, the field report is included in the Supplemental Attachments section.
- 2. Four random compaction tests were done on September 27th on fill areas at the top of the impoundment. All tests equaled or exceeded the 90% minimum specification. A copy of the field test report is included in the Supplemental Attachments section. Additional testing is scheduled for early October as the embankment regarding is completed.

Cost and Schedule

Committed costs in September 2005 were approximately \$141,600. Total project to date committed is approximately \$730,400. Forecast cost at completion is expected to be \$1,190,800.

The cost report for September is attached. Current status of the deliverables listed in the RCRA 7003 order is as follows:

Due	Reference Paragraph	Post warning signage around perimeter of site	
15 days after effective date of order	57		
45 days after receipt of filing of order	63	Begin implementation of closure plan	
28 th day after close of month	64	Monthly progress reports	
30 days after completion of all closure plan tasks	65	Completion report	
all closure plan			
F	15 days after effective date of order 45 days after receipt of filing of order 28 th day after close of month 30 days after completion of all closure plan	Paragraph 57 15 days after effective date of order 63 45 days after receipt of filing of order 64 28 th day after close of month 65 30 days after completion of all closure plan	

The update of the schedule milestones is on the following table:

Milestone	Target	Actual	Remarks
Issue bid package – Phase I (Sump Drains)	6/14/04	6/15/04	Portion of RFP materials issued at pre- bid on 6/14/04; remainder sent via courier
Issue RFP package - Phase III	6/24/04	6/24/04	
Award contract for Phase I	6/24/04	6/29/04	Date contract was shipped to Hughes
Pre-bid meeting - Phase III	7/19/04	7/19/04	
Start Phase I (Sump Drains) construction	7/12/04	7/19/04	
Start Phase II (Evaporation)	7/19/04	7/29/04	
Receive bids for Phase III	8/2/04	8/2/04	
Re-bid Phase III contract package	April 2005	4/27/05	Date bid package was sent to Hughes
Start Phase III construction	End of August 2005	8/29/05	Start of contractor mobilization
Complete Phase III construction	Mid Nov. 2005	,	Revised target based on progress to date

Supplemental Attachments

- 1. "Site Visit and Construction Review", memo dated September 29, 2005 by Doug Gibbs, P.E., Monster Engineering, Inc.
- 2. "Fill Observation and Testing Report", September 27, 2005, by Applied Geotechnical Engineering Consultants, P.C.

Apex Site Pond 2 Final Closure Project Cost Report

				Cumulative					
Activity	2004 Budget	Revised Budget May 2004	Committed Cost this Period	Committed Cost To	Forecasted Cost To Complete	Forecasted Final Cost	Remarks on Forecast to Complete		
Phase I - Drain Excess Liquid From Tallings									
Test wick program - Nilex		35,000		35,000	0	35,000			
Earthwork during wick test program	·	2,000		1,768	0	1,768			
Install drainage piping and sumps:									
Contractor mobilization/demobilization		5,500		5,500	0	5,500			
Install sumps - material & labor		20,000		24,500	0	24,500			
Build surface evaporation ponds		2,700		838	0	. 838			
Remove existing evaporaton ponds		2,000		0	0		Work moved to Phase III		
Bury existing pond material & regrade		2,000		·	0		Work moved to Phase III		
Survey monuments		3,500		1,160			Cost to complete transferred to As-built drawing line item		
Subtotal Phase I	189,200	72,700		68,766	0	68,766			
Phase II - Evaporate Excess Liquid						,			
Operate evaporation & pumping system	·	8.000	l'	9,585		9 585	FY 2004 work only		
Test pits to determine dewatering progress		3,000		1,320		1,320	i i sant mais diay		
Upgrade evaporation cells & collection sumps				132,114		132,114			
Dewatering & seepage collection management			5,000	99.468			T&M labor + equipment; February '05 through Oct '05		
Subtotal Phase II	6,000	8,000	5,000	242,487	5,000	247,487	Take labor - equipment, repress y or unough our or		
Phase III - Regrading & Final Cover System				-					
Contractor mobilization/demobilization		20,000	28,800	33,226	19,200	52,426			
Excavate existing embankment		15,000	72,800	72,800	71,700	144,500	Incl misc. repairs to existing liner edge added to scope		
Final grading of 1% surface		2,500		0	0		incl w/ 12" protection layer		
Place barrier layer (GCL) - top		200,000		0	167,000	167,000			
Place barrier layer (GCL) - outslopes		50,000	, .	0	0	0	incl w/ GCL cover cost		
Excavate diversion channel		9,100		0	40,000	40,000			
Place 12" protection layer on top surface		19,000		0	56,000	56,000	Incl \$6,000 allowance for hydroseeding added to scope		
Reconstruct outside embankment		7,350		0	0	0	incl w/ excevation of existing embankment		
Finish grade 1% surface - top		3,000		0	0		inci w/ 12" protection layer		
Place surface layer at outslopes (D50 = 1")		4,800		0	0		Incl w/ 12" protection layer		
Recontour diversion channel for drainage		2,000	,	0	0		Incl w/ diversion channel exc		
Place diversion channel erosion protection (3" rock)		3,800		0	0		Incl w/ diversion channel exc		
Surveying - diversion channel drainage		2,500		0	0		Incl w/ diversion channel exc		
Remove existing evaporation ponds		0		. 0	0		Incl w/ excavation of existing embankment		
Clear site for construction		3,000	7,500	0	7,500	7,500			
Performance & Payment Bond		0		0	.0		Requirement waived		
Subtotal Phase III	337,000	342,050	109,100	106,026	361,400	467,428			
Reld Indirect Costs					<u> </u>				
Construction Management labor		108,360	18,185	194,221	38,900	233,121			
Construction Management field expenses		38,575		44,482		54,357			
Field office trailer		6,525	165	3,158		3,988			
CQA testing		9,200	750	750		17,100			
CQA completion report		5,000		0	5,000	5,000			
Survey and layout		2,208		348	2,360		includes as-built survey		
Material classification tests		1,500		5,762		8,262			
Consulting Engineer		42,200		44,259		53,659			
Subtotal Consultants	164,500	213,568	27,243	292,979	85,215	378,194			
iecia Costs									
Labor	15,500	15,500	304	18.047	6.300	24.347			
Travel expenses	3,200	3,200		2.098	2,500	4.598			
Subtotal Hecia Costs	18,700	18,700	304	20,146	8,800	28,945			
Total Pond 2 Final Closure	715,400	655,018	141,847	730,402	460,415	1,190,817			

MONSTER ENGINEERING INC

ENGINEERING DESIGN MANAGEMENT

3031 bonner spring ranch road laporte, colorado 80535

> (970) 221,7177 cell (970) 219,1335 fax (970) 224.0161

email: monster@peakpeak.com

MEMORANDUM

TO:

Chris Gypton (Hecla Mining Company)

CC:

Jeff Smith / Al Cain / Dave Jones (Gila Management, LLC)

FROM:

Doug Gibbs (Monster Engineering Inc.)

9/29/05

DATE:

SUBJECT: Site Visit and Construction Review - Apex Site

MEI visited the Apex Site on September 21st, 2005 to:

- review construction activities to date
- discuss specific design features
- provide design guidance on specific issues concerning Pond 2 Closure

Enclosed with this memorandum are 7 photos taken during the visit which show specific areas reviewed with Gila Management and Hughes (the general contractor).

Overall construction appeared to be progressing quickly with no major concerns. Weather conditions have been excellent. Work to expose the existing liner and cut back the old embankment materials were almost completed, and efforts were beginning on final existing liner cleaning. The existing liner showed some signs of damage, however most of these areas were very minor in scale. Hughes was doing a good job at exposing liner and minimizing damage. Placement, grading, and compaction of the re-graded top surface was also progressing quickly with acceptable lift thicknesses and application of sufficient compaction. General areas reviewed and particular items discussed are listed below.

Exposure of Existing Liner

Several damage areas were examined and several methods of attempting patches were discussed. The agreed upon resealing method was to patch all damaged areas with GCL overlaid a minimum of 18 inches (horizontal) over the existing liner. A minimum 1 inch thick powdered / granular bentonite seal will be placed between the exiting liner and new GCL "patch".

Methods to remove existing waste / old embankment materials (OEM) from the existing liner were discussed. Hughes will continue with their current method using a large excavator to remove the bulk of the materials, along with a small excavator and laborers with shovels to remove minor quantities down to the exiting liner. Remaining waste / OEM will then be allowed to air dry and will subsequently be broom brushed by hand. A minimum of 2 feet of existing liner will be exposed in this manner to allow for a sufficient tie-in with the new GCL.

Bentonite Layer Thickness

A minimum of 1 inch of powdered / granular bentonite will be installed between the exiting liner and GCL.

Subgrade Completion and Compaction Testing

No compaction tests had been completed as of this site visit. We discussed and agreed on methods for completing a proctor for the materials as they are highly variable. Compaction was being accomplished with a sheepsfoot roller, and haul truck and dozer traffic. Layer placement was less than 1 foot. Compaction on certain very limited outslope areas will not be possible due to over-optimum moisture in these materials. Methods for removing and disposing of oversized and protruding rocks were discussed and agreed upon.

Final Grading Methods and Specifications

We reviewed that the maximum top slope surface is 1%. If additional waste / OEM storage is required then the entire top surface will be raised to accommodate this material. Hughes will utilize a grader and laser level to final grade the top surface.

Diversion Channel / Cover Material Borrow Area

All questions concerning invert location, design intent, borrow area limits and depths, and erosion protection location and intent were discussed and agreed upon.

Liner Disposal

Disposal techniques for the remaining collection pond liner materials were reviewed. The liner will be cut, layered, and buried within the impoundment in a way as to minimize potential future consolidation of these materials.

Settlement Monuments

The intent and placement of the settlement monuments was discussed. Monuments serve as one method of observing overall long-term reclamation performance specifically related to consolidation of the buried materials.

Temporary Diversion / Stormwater Runoff

MEI suggested that during this phase of construction Hughes be sufficiently prepared to construct temporary containment berms at the embankment outslope toe in case of large precipitation events.

GCL

Items discussed and agreed upon included the location and depth of the tie-in trench, QA/QC, bentonite seal materials and thickness, overlap distance, GCL material types for the outslopes (needle-punched with acceptable shear strength as listed in the specifications) and top surface, and subgrade acceptance by the subcontractor.

Photo 1 – Existing liner condition at top of original impoundment dike.

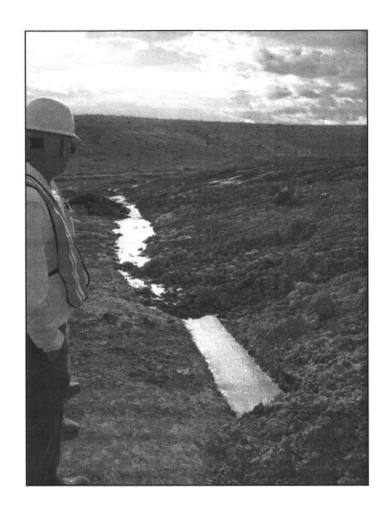


Photo 2 – Top of existing liner exposed on north side of impoundment.

Photo 3 – Top of existing liner exposed on east side of impoundment.

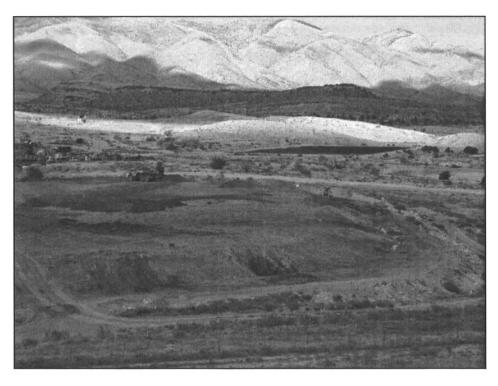


Photo 4 – General view of Pond 2 site looking northwest.

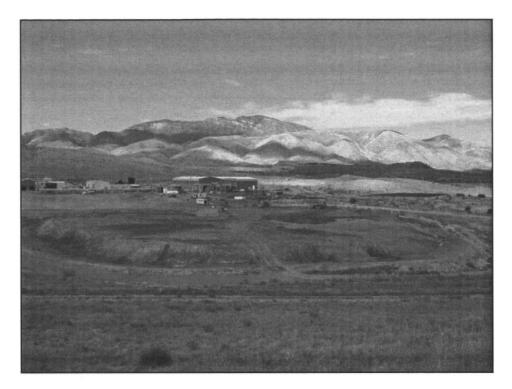


Photo 5 – General view of overall Apex site, looking west.

Photo 6 – Typical method to expose existing liner.

Photo 7 – Fine grained, plastic tailings temporarily exposed by embankment re-grading.

520-885-4484

Oct 10 05 09:40a Jeff Smith

09/27/2005 18:51

7823467438

MESQUITE BLOGET INN

PAGE 92/86

p.2

TERA

APPLIED GEOTECHNICAL ENGINEERING CONSULTANTS, P.C.

600 West Sandy Parkway Sandy, Uten 64070 (801) 566-6399 158 West 1600 South St. George, Utah 64770 (435) 679-8850

CAIPT	ON OF	DCY OFIG PAC CAP CY2108 DATE: 9/27/05 COATION: TUINS	MOIST	UREST	NT:	18646 23 8 7 2 80 PAGE: of					
TEST LOC ID COD to be	LOC. CODE (an impair of sheat)	LOCATION	TEST ELEV.	Proctor MDD (PGF)		OMC (%)	Dry Danain	Moistau Compac Content Field		ction % Retes	
	-	26' of New of order point / proc	lec.	12	1370	8.50	177.0	4.3	76	GO GO	N
2		25" ch A f at postin post fore		1	. 1	1	126-1	23	95	17	N
3	11	pot th SE at response straffers		17			11.7	6.1	98	11	n
1	1	100' of Sty of penting training		1	•	1	130	29	78	1	N
		Control of the Contro									
		1.00									
							·				
		• • •					,				
•				, .							
					•						
				,							
								·		<u> </u>	
	,										
ries:	A o	est to p	_	Prosto		M Tear shod		Soft (Descript	ion	
			_	A	T		chare a	5646	46	pacel	

is report presents ophicis formed as a result of our abservation of fill placement. We have railed on the contractor to continue applying the recommended reportive effort and mointage to the fill during timestage observes is not observing operations. Tests are made of the fill only as believed necessary to calibrate our server's judgment. Test data are not the sole begin to exhibite on whether the fill muste appointed one.

release referred to herein were performed in excordance with the standard of case practiced locally for the referenced method(s) and relate only to the condition(s) served or sample(s) tessed at the time and place shalled herein. AGEC makes no other warranty or representation, including source of materials submitted by others.